Management | 3DPrinterOS

Посты по тэгу: Management

Bockman’s Bites on Lean Six Sigma in Additive Manufacturing

July 28, 2021

Trim the fat. Cut your losses. Eliminate Muda. 

I am writing a short series of bites about the importance of implementing Lean Six Sigma methodology in Additive Manufacturing.  It not only drives efficiencies and increase output, but it can improve quality levels as well.  

I will open up the first bite with the background of what L6S is in traditional manufacturing and some of my experience. 

Bite I : What is Lean Six Sigma and AM Combined?

Continuous improvements for any department of an organization are paramount to the successful growth and adaptation of a business. In our hyper competitive commercial and industrial marketplace there is no excuse for downtime, so what steps are you taking today to maximize organizational or production efficiency? 

Lean Six Sigma is a managerial concept born from the combination of lean manufacturing and Six Sigma aimed to identify operational weaknesses, expose variation and make adjustments for continuous improvements. While each concept was used separately during the 1980’s and 90’s primarily for automotive and electronics manufacturing, it became a joint idea during the early 2000’s and has since transformed manufacturing. With the ultimate intention to identify weaknesses and improve operational efficiency, Lean Six Sigma has become a significant tool across many different industries and professions. In my own experience at General Electric, L6S was a part of our culture, our DNA.  I had the privilege to work with a Lean Sensei, who helped us learn and apply methodologies in our manufacturing plants.  We made real improvements by identifying ways to remove unnecessary steps in our workflow and eliminate muda (waste). With my knowledge of Lean Six Sigma and a decade of implementation experience, I’m turning my sights towards additive manufacturing. What needs to be done in order to fully optimize AM and the future of manufacturing?  Can L6S work in additive manufacturing?

The additive manufacturing (AM) industry is relatively young. However, there are countless hardware, software, technology and material companies popping up everyday and making significant impacts. For reference, the AM market is expected to exceed $20 billion by 2023. Alternatively, the CNC market was valued at approximately $7.87 billion in 2020, further indicating that AM is certainly here to stay.  But we haven’t figured out all the kinks yet. 

L6S is about efficiency. AM has already proven itself as a viable prototyping and production unit but what steps can be taken to truly maximize utilization? While 3D printing is a revolutionary piece of hardware technology, the brains and machine connectivity within a machine shop or manufacturing space is average at best. Smart manufacturing relies on actionable information collected through key data points and must be driven by intelligent systems. For example, contract manufacturing service providers in the US have grown significantly and are desperate for a software platform that allows them to digitally view the production floor, assign projects, and proactively identify problems (failed builds, predictive maintenance, equipment downtime). Simply put, how can we make additive manufacturing smarter? Check back in next week for our next installment of L6S-AM when we address the challenge of combining conventional manufacturing methods and what that means for certain industries. 

Feel free to share comments, your experience and where you think it’s headed.

The best workflow software for Fab-Labs and Makerspaces

July 21, 2021

Duke University is home to one of the largest 3D printing networks in US academia. Over 120 3D printers are accessible by an entire student body enabling the prototyping and production of countless ideas and inventions. Applications vary with interest but it ranges from anywhere between entrepreneurial engineering to architectural modeling and beyond. Duke’s Fab-Lab has found a way to democratize 3D printing by adopting cutting edge hardware technologies and combining it with sophisticated workflow software solutions that make 3D printing simple and approachable for all academic disciplines in their campus.  We sat down with Chip Bobbert, CoLab Architect and Senior Technologist, to learn more on how they are managing their 3D printing network maker spaces.

 

Bobbert, former Command Center Specialist for the US Marine Corps, began working at Duke University in 2013 after spending two decades as a media technology engineer. His experience in conventional machining, media technology, 3D printing and education drives his ability to manage and improve the Duke CoLab.

What is so special about the Duke 3D printing network?  “Duke is a geographically large campus, approximately 3,500 developed acres. We have three maker spaces, consisting of approximately 80 printers, while our sister labs are assigned to specific programs located in multiple locations. With over 120 total printers on campus, we have found a way to simplify 3D printing and enable access to over 2,500 students year-over-year. Our maker spaces are predominantly filled with a range of Ultimaker 3D printers and our collective network is powered by 3D Control Systems’, 3DPrinterOS software solution. These complementary technologies enable Duke students from any discipline to access the printer network and build parts.”

What are the challenges with having such a vast printer network?  “First, we needed to determine how the program itself would work — would students pay for parts? What does scheduling look like? How would we manage it?  Having printers located throughout campus is great but we quickly realized that a middleware management software system would allow us to delegate rights to users and manage the flow of files from a centralized platform. We were shocked to find that not many software options like this existed, considering that there are countless 3D printers on the market, we thought this was rare. 

Of course, the platform needs to function properly but we require an identity management capability that allows us to authenticate users from anywhere and be monitored from one location.” 

How did Duke solve this challenge and what does access look like today?  “After searching for a software platform and even creating our own, we decided to try 3DPrinterOS. The printer management functionality is good but the real benefit is user management. There are thousands of unique users every year so we need software that would integrate into our system and accommodate that type of turnover. Let’s face it, designing for 3D printing can be complex but the printers themselves are typically low IQ systems that require a boost for ultimate connectivity and user optimization. 3DPrinterOS helps us accomplish that and now, we are expanding access to 3D printing way beyond the engineering department. Inventioning is possible for designers, architects, sculptures, artists and more.”

What is the future of 3D printing at Duke? “Convenience is key. How can we make 3D printing as simple and easy as 2D printing? The software platform is a powerful tool that democratizes access to the 3D printer network but we need to get closer to printing something with a single click of a button. Nobody cares about the printer, they care about their designs and parts. As a 3D printer evangelist, I understand this and believe that if we continue to simplify the process then it will become much more convenient and accessible. 3D printing has the ability to unlock so many new opportunities for bespoke manufacturing, medical applications, and beyond. I want non-engineers, scientists, doctors, and anyone else to have the ability to get parts in hand.” 

Learn more about Duke University, Ultimaker, and 3D Control Systems’ 3DPrinterOS platform for managing makerspaces. 

  • Recent Posts

  • Follow Us

  • HQ

    1518 Pershing Drive,

    APT F, CA 94129,

    San Francisco, USA

    SALES

    49 Wyckoff Ave,

    Brooklyn, NY 11237, USA

    RESEARCH AND DEVELOPMENT LAB

    Mektory Innovation Center building

    Raja 15 , Tallinn,

    12618, Estonia

    Follow us!

    Site Map